

GOALS AND OBJECTIVES

Goals & Objectives

Meeting Vision Zero Policy Goals

Safety improvements and design to reduce traffic deaths and serious injuries.

Improve transit travel times and on-time reliability

 Using treatments such as bus bulbs, queue jumps, and transit lanes consistent with the Transit First Implementation Plan.

All Ages & Abilities biking facilities

 Provide safe, comfortable, connected bike facilities for bi-directional travel consistent with the goals of the City of Berkeley Bicycle Plan.

A state of good repair

 Spot pavement repair, ADA curb ramp upgrades, traffic signal upgrades, and other maintenance activities to enhance safety for all users.

Curb management strategy

 With input from residents, visitors, and the business community, develop a design that provides commercial and passenger loading zones adequate to support local businesses and destinations, more and better accessible parking spaces and paratransit access, and preserve on-street parking as much as possible.

Corridor Concepts

Concept 1

- Two travel lanes in each direction
 - One General Purpose lane ("GP lane")
 - One transit, right turn, and driveway access lane. Also known as Business Access and Transit lane ("BAT lane")
 - Maximizes parking by limiting left turn pockets
 - Eliminates 13 of 15 left turns

Concept 2

- Similar to Concept 1 Two travel lanes in each direction
- More left turn pockets and opportunities (Stuart Street and Parker Street)
 by reducing curb space
- Eliminates 11 of 15 left turns

New Concept 3B

- Same as prior Concept 3, but with transit priority elements such as BAT lanes and queue jumps in vicinity of Ashby to improve performance for all modes
- Continuation of the "Oakland" design on Telegraph
- Reduction of travel lanes to one in each direction
- Maximizes left turn pockets and opportunities and includes continuous center turn lane

Initial Concept Schematics

Concept 3B

Why is Concept 3B the "Recommended Concept Design"?

- **Ashby:** Contributes to **57% to 71%** of the increased vehicle travel time, and **84%** of the increased transit travel time
- Concepts 1 and 2 lack diverters (except at bike boulevards) creating the potential for dangerous illegal left turns, per Vision Zero traffic safety analysis
- Concept 3B recommended because it:
 - Prioritizes Vision Zero by slowing vehicle speeds, shortening pedestrian crossing distances, and making left turns more predictable
 - **Prioritizes transit** where most transit delay is occurring
 - Maintains most parking and loading, consistent with Telegraph Business Improvement District input
 - Aligns with Fire Dept. feedback
 - Public survey preference 54% of respondents chose Concept 3
 - Consistent with Oakland design leading up to the Berkeley border
 - Note:
 - Intersections not fully designed
 - Benefits from AC Transit's in-progress Telegraph Rapid Corridors Project not modeled
 - o Opportunities for further transit performance mitigation during detailed engineering

Traffic Analysis – Recap and Potential Mitigations

- Ashby: Contributes to 57% to 71% of the increased vehicle travel time, and 84% of the increased transit travel time
- Note:
 - Testing was of high-level schematics, not fully designed intersections
 - There are a number of approaches that we can take in design refinement to reduce the LOS and travel time implications at Ashby Ave
 - Permissive left turn signalization at Ashby Ave
 - Maintain 2nd lane to Ashby Ave intersection (BAT or general purpose)
 - Extend left turn lanes

Difference in <i>Vehicle</i> Travel Time vs. Existing			
Concept 1	Concept 2	Concept 3	*NEW* Concept 3B
+42%	+70%	+100%	+65%

Difference in <i>Transit</i> Travel Time vs. Existing			
Concept 1	Concept 2	Concept 3	*NEW* Concept 3B
-17%	-9%	+59%	+10%

Transit Travel Time – Detailed Analysis

Synchro Arterial LOS tool plus right turn delay and bus stop information utilized to estimate transit travel time
 through the entire study corridor
 Key Findings

Scenario	Bus Configuration	Stop Configuration
Existing	Buses in mixed flow 2 through travel lanes	Pull-off
Concept 1	Buses in bus/right turn only lane	In-lane
Concept 2	Buses in bus/right turn only lane	In-lane
Concept 3	Buses in mixed flow 1 through travel lane	In-lane
NEW Concept 3B	Buses in mixed flow except between Webster and Russel	In-lane

Transit Travel Time (Min)	Existing	Concept 1	Concept 2	Concept 3	*NEW* Concept 3B
AM NB	5.4	4.5 (-0.9)	4.6 (-0.8)	9.9 (+4.5)	5.6 (+0.2)
AM SB	4.8	4.6 (-0.2)	5.3 (+0.5)	6.9 (+2.1)	6.1 (+1.3)
PM NB	6.1	4.9 (-1.2)	5.6 (-0.6)	7.7 (+1.6)	5.9 (-0.2)
PM SB	5.7	4.2 (-1.5)	4.4 (-1.3)	10.6 (+4.9)	6.2 (+0.4)

- Transit travel time changes -14% to +65% depending on Concept
- Concepts 1 and 2: Generally, up to a minute of travel time savings over current conditions
- Concept 3: Lack of a BAT lane results in 1.6 to 4.9-min increase in travel time
- *NEW* Concept 3B: -.2 to 1.3-min increase in travel time compared to existing, but significant reduction compared to Concept 3A

Note: Travel time savings do not reflect any potential transit signal priority improvements as part of in-progress AC Transit Telegraph Rapid Corridor Project

Average Change in Transit Travel Time vs. Existing			
Concept 1	Concept 2	Concept 3	*NEW* Concept 3B
-17%	-9%	+59%	+10%

Summary of Stakeholder Feedback

- Fire Department prefers Concept 3 or Existing Conditions
 - Potential for center turn lane to be clear during emergencies
 - Simple and consistent design reduces driver confusion
- AC Transit and UC Berkeley TDM Manager
 - Favor Concepts 1 and 2 due to transit benefits
- Disability community favors blue zones on side streets so wheelchairs are not let out in a bike lane. Would like to see another concept without bike lanes
- Telegraph Business Improvement District expressed support for studying a closure of the Dwight Triangle slip lane closing Dwight Triangle slip lane
- Public survey expressed strong preference for pedestrian and bike safety improvements
- Public Meeting
 - Questions around use of parallel bike boulevards
 - Concerns raised about access to neighborhoods if left turns largely eliminated under concepts 1 and 2

Public Survey Results

- Online public survey open from 6/11 7/3 (22 days)
- 505 responses
 - What is most important to you?
 - 51% said ped safety
 - 32% said bicyclist safety
 - 23% said disabled person access
 - 22% said on-street vehicle parking
 - 18% said transit speed and reliability
 - 9% said commercial loading zones
 - What is "very important" to you?
 - 82% said ped safety
 - 52% said accessibility
 - 48% said bike lanes
 - 32% said transit improvements
 - 22% said maintaining on-street parking
 - 15% said loading zones

Which concept do you prefer?

Evaluation Criteria

- Two Level Evaluation Weighting
- Level 1: Baseline Considerations (Pass/Fail)
- Level 2: Ability to Address Project Goals + Public Feedback
- Concept 3B ranked highest among all concepts

Level 1: Pass/Fail Criteria

Maintaining Emergency Response, Access, and Egress

Maintaining Traffic Circulation

Traffic Operations

Level 2 Criteria (Project Goals and Public Feedback)

Meeting Vision Zero

Transit Speed & Reliability

Providing All-Ages and All-Abilities Facilities

Providing a State of Good Repair

Managing Curbspace Usage

Public Feedback

Schedule and Next Steps

Concept Design: Project Status

Future phases of this project (detailed engineering and construction) have *not* yet been funded or scheduled.

Thank you!

